Nanocrystalline Alloy Ribbons and Their Applications PRC

PROTERIAL

Prof. Dr. Motoki Ohta

Global Research and Innovative Technology Center

(Professorship from Shimane University)

About Me

PROTERIAL

Motoki Ohta

Affiliation

- Senior Researcher: PROTERAL (Hitachi Metals)
- Professor: Shimane University Next Generation Tatara Co-creation Center

Background

- Academic degree: PhD. 2002 Tohoku University (Sendai Japan)
 "Spin Fluctuation and Thermal Expansion Anomaly in Y₆(Mn_{1-x}Fe_x)₂₃ Compounds and Amorphous Alloys"
- Work History:
 - 2002-05: Assistant Professor @ Tohoku University:
 - Magnetics of solid-state metals
 - Thermal expansion & Spin fluctuation (itinerant feature of spins)
 - 2005-now: Researcher @ Hitachi Metals (2013-15 Metglas):
 - Development of rapid quenched soft magnetic materials such as nanocrystalline & amorphous ribbons
 - 2019-now: Professorship from Shimane University:
 - Project Leader of the commercialization of amorphous motor
 - Processing and characterization of Fe-based amorphous ribbon

My Lifework Research (relation with todays presentation)

- Basically R&D person
- Materials development, Soft magnetic properties
- High Fe content nanocrystalline soft magnetic material (total citations: 979 google scholar)
 - Most cited: APL 91 (2007) 062517. (citations: 152)
- Pursuit of the origin of nanocrystallization and magnetic anisotropy in FINEMET[®]

Contents

- About PROTERIAL (Former Hitachi Metals)
- Ideal Soft Magnetic Materials (SMMs) and
 - Fe-based nanocrystalline alloy FINEMET[®]
- SMMs in medium frequencies
 - Development of High Fe content nanocrystalline alloys High B_s nanocrystalline alloy (Hi-B_s nano)
- Applications of Hi-B_s nano
- Remaining issues

We were Hitachi Metals... Now we are PROTERIL

Date of Establishment	April 10, 1956
Capital	310 million yen (as of March 31, 2023)
Representative	Sean M. Stack - Representative Director, Chairman, President and CEO
Number of Employees	Proterial, Ltd., Non-consolidated: 5,754 (as of end of March 2023) Proterial Group, Consolidated: 26,496 (as of end of March 2023)
Revenues	Proterial Group, Consolidated: 1,118.9 billion yen (FY2022)
Number of Consolidated Subsidiaries	Japan 2 3, Overseas 3 8, Total 6 1 (as of end of March 2023)

Power Electronics Materials Business Unit

PROTERIAL

Our Advanced Soft Magnetic and Ceramic Materials Contribute to Energy Conservation and ICT innovations

We offer a long list of specialty materials and components; Metglas[®] amorphous metals, FINEMET[®] nanocrystalline materials and high-performance soft ferrites and ceramics.

PROTERAL HP

PROTERIAL

NEOMAX[®] brand, key material for industries

We boast an extensive magnet range, which includes NEOMAX[®] rare earth magnets and ferrite magnets, and provide our products across a wide range of fields, encompassing automobiles, electronics and home appliances. As pioneers in the field of magnetic materials, we take on the challenge of new materials and new production technologies, meeting our customers' diverse needs and contributing to the creation of a more energy-efficient society.

Alloy Name	Constituent Elements	Thickness	Grain Size	Induction	Core Loss
Grain Oriented Si Steel	Fe, Si	230 μm	~ 10 mm	Ø	Δ
Fe-based Amorphous	Fe, Si, B	25 μm	—	0	0
Nano-Crystalline Alloy	Fe, Si, B, Cu, Nb	18 µm	~ 10 nm	Δ	Ø

PROTERAL HP

Amorphous Alloys for Transformers

PROTERIAL

Our main product for Rapid Quenching business

Amorphous Alloy for Transformer "Metglas® 2605HB1M"

Amorphous Transformer*

* Photo Credit: Hitachi Industrial Equipment System Co., Ltd.

PROTERAL HP

Major Bases (amorphous & nano)

Products of Amorphous Alloy & "FINEMET[®]"

PROTERIAL

Nano-Crystalline Soft Magnetic Material "FINEMET""

Production capacity Amo & Nano total ... 1 O O kt/year (US&JP)

Item Amorphous alloy ... width 142-213 mm, Thickness 0.025 mm

Nanocristillne alloy... W 50-85 mm, T 0.014-0.018 mm

Application products using "FINEMET®"

1 spool = 100 kg (17 km)

PROTERAL HP

- Ideal Soft Magnetic Materials (SMMs) and
 - Fe-based nanocrystalline alloy FINEMET[®]

Ideal SMMs

Main applications using FINEMET[®]

Transformer for high frequency

PROTERAL HP

Example for PE ~High frequency transformers~

• Transformer suitable for high-power, high-frequency SW circuits

App ex: EV, PHEV Quick charger, Welding machines, medical equipment Other inverter applications

0.6m Size comparison vs 40 kVA commercial freq. trans. Volume 約 1/20 Weight 約 1/30

O.A.C

0.5m

FINEMET & Metglas in EV&PHEV

PROTERIAL

PROTERAL HP

- SMMs in medium frequencies
 - Development of High Fe content nanocrystalline alloys High B_s nanocrystalline alloy (Hi-B_s nano)

Applications which requires higher B_s

Ħ

 $H_{\rm c}$

Neary full loop

B_s

Motors

Copyright © 2023 Proterial, Ltd. All Rights Reserved.

Choose materials with a good balance of high *B*_s and low losses to obtain high power density at the expense of the best low-loss performance

- Applications that use *B*-*H* loops throughout
- Medium frequency (sub kHz tens kHz)
- Output will be determined not only by the B_s , but also by frequency.
- Higher the frequency, higher the core loss i. e it creates heat.
- If the coefficient of core loss is low, it is easier to pull out power by increasing driving frequency.

Metallic SMMs on B_m vs. H_c map

Soft magnetic materials on the B_m vs. H_c map

Concept of Materials Development

High B_s Nanocrystalline alloy

Characters of FINEMET[®] **composition**

Composition of FINEMET[®] alloy

 $Fe_{73~75}Cu_{0.8~1.0}Nb_{2.6~3.0}Si_{13~16}B_{6~9}$

(at.%)

Y. Yoshizawa, et. al.: *Mater. Sci. Eng.*, A181/A182 (1994) 871-875.

Low Fe, relatively high Nb \Rightarrow Low B_s

Fe: source of magnetic moments Nb: high number density of seeds & suppresses grain growth

Annealing process of FINEMET[®]

Adopting Quick Anneal

PROTERIAL

Fe_{73~75}Cu_{0.8~1.0}Nb_{2.6~3.0}Si_{13~16}B_{6~9}

increase decrease at the expense $Fe_{80~83}Cu_{0.8~1.0}Nb_{0.0~1.0}Si_{0~7}B_{12~15}$ (M = Nb, Mo ...)

at the expense of low magnetostriction, aim high B_s

(at.%)

Roles of Nb elements → substituted by Quick Anneal

(flash anneal)

Approach 2. Rob migration time of Cu atoms

Cu clustering in Normal Annealing in new composition ROTERIAL

Cu clustering in Quick Annealing

PROTERIAL

High number density of seeds remains \rightarrow fine nanocrystalline phase

B-H loops of NA and QA ribbons

M. Ohta, Y. Yoshizawa, JMMM 321 (2009) 2220–2224.

Position of developed high *B*_s nano alloys

PROTERIAL

• Applications of Hi-B_s nano

- Block core for a reactor
- Motors

Core types

PROTERIAL

http://kuretake-denko.co.jp/pages/core shurui/TOR.html

Easy to implement and easy to adapt to various applications

Soft magnetic properties block cores

PROTERIAL

HBN core

Soft magnetic properties block cores

 $Hi-B_s$ nano core shows high B_{2000}

	B _{2k} (T)	В _s (Т)	B_{2k}/B _s	λ _s (10⁻6)
HBN	1.73	1.75	99%	14
Fe-AM	1.50	1.57	96%	27

Better saturation behavior in HBN.

Hi- B_s nano can handle 10~15% larger DC superposition current

Soft magnetic properties block cores

loss separation of block cores

PROTERIAL

 $P_{\text{total}} = P_{\text{h}} + P_{\text{e}} + P_{\text{ex}}$ $P_{\text{h}} \propto f^{1} \qquad P_{\text{e}} \propto f^{2} \qquad P_{\text{ex}} \propto f^{1.5}$

 $P = af + cf^{2} + bf^{1.5}$

conventional plot: liner = eddy current

 $P/f = a + cf + bf^{0.5}$

c : negligibly small

Contribution of excess eddy current loss is dominant in medium *f*

b is strongly depending on pinning of domain wall

High *B*_s nano can be used in higher frequency

Comparison of core materials in Φ 50mm motor

item	value
Stator	Φ50 mm
Rotor	Ф31.4 mm
Gap	0.3 mm
Thickness	50 mm
Stator core Material	Amorphous (HB1M: PROERIAL)* Hi B_s Nano (PROTERIAL) Si-steel (35H300: Nippon Steel)
Output	30 W (at 1000rpm) 300 W (at 10000rpm)
Voltage	Max. 200V
Current	Max. 3A

*result from Shimane Univ

PROTERIAL

Amorphous, High B_s Nano: @10000rpm(1333Hz) 85% lower core loss than Si-steel core Similar torque Analysis (@3.2 A)

2.2T	RPM	Core material	Torq (Nm)	Coil loss (W)	Core loss (W)	Total loss (W)	Core
	1000	Amorphous*	1.03	3.06	0.147	3.207 💦	1/8 Total
	min^{-1}	Hi Bs Nano	1.03	3.06	0.137	3.197	10tai 25%↓
		Si-steel	1.02	3.06	1.175	4.235 /	
	10000 min ⁻¹ (1232Hz)	Amorphous*	1.03	3.06	2.917	5.977	Core
Contour Diagram		Hi Bs Nano	1.03	3.06	3.308	6.368	1/14 Total
	(100002)	Si-steel	1.02	3.06	39.82	42.88	85%↓

*result from Shimane Univ

Very meaningful difference can be expected!

PROTERIAL

>No-load loss: equivalent to Amorphous and Hi- B_s nano teeth

> In the light-load: efficiency of Amo/Hi- B_s nano...significant improvement

In the high-load: the proportion of coil loss increases, so the difference with Si-steel core decreases, and eventually the efficiency is reversed

There is an optimal design point for utilization

Issues of amorphous ribbon production

PROTERIAL

*nanocrystalline ribbons are also casted as amorphous phase

Punched (stamped) amorphous ribbon as a stator shape

No problem in shearing process

Shearing is easy!

Go simpler shape!

Thin & hard ... requires more processes than thick & soft materials

But don't forget that "thin" will lead to low eddy current loss in high freq.

Now we are trying to keep the number of strokes down in punching process

otherwise

Radial Gap Motor

PROTERIAL

SPEC	Contents	IPM Motor			
1.4	Power	22kW(6000 rpm, 35 N · m) Max : 66kW(7000 rpm, 90 N · m)			
	Torque	90 N · m 20000r/min			
	RPM				
	Size	φ215×50mm(1.8L)			
	Weight	13.6kg			
	Efficiency	96.0% (Calculated value)			
Stator – Si-steel (gray Stator – Rotor	color) Amorph	Si-steel			
Ref: All Si-steel	①Teeth or (Amorp	f stator hous) Teeth of stator (Hi Bs Nano)			

The models, Cross section of 1/4 of Motor

This simple shape can be prepared by shearing

Yuji Enomoto et .al: IEEJ Transactions on Industry Applications **143** (2022) pp.330–336

■ No-load loss

Yuji Enomoto et .al: IEEJ Transactions on Industry Applications 143 (2022) pp.330–336

Current vs. Torque

PROTERIAL

*The result could be expected

Yuji Enomoto et .al: IEEJ Transactions on Industry Applications 143 (2022) pp.330–336

Efficiency map (tested result)

PROTERIAL

Highest efficiency

Higher efficiency in wide condition •Si-steel < Amorphous (teeth) < High B_s nano (teeth)

* ... So far, the high B_s nano is the best

- Remaining issues
 - Recycling
 - Punching processing

PROTERIAL

Recycle of Amorphous Transformer

AM ribbon

Discard AMDT

Energy saving and Resource circulation

Crushed AM core

Retrieve AM core from AMDT

Challenges for practical application

Challenges specific to Hi <i>B</i> _s nano		New machining process or Consider the usage			
Material	Assumed production process and challenges		Countermeasure		
Brittleness with crystallization	Anneal ribbon	Material Machining	 Shearing method ex : Teeth core 		
 Shrinkage with crystallization 	Shaping Lamination	Simpler Shape is easier	 Processing methods other than stamping ⇒developing 		
 High heating rate anneal 	Shaping Material ↓ Mac Parts anneal ↓ Lamination	 In-plane variation of contraction <i>chining</i> Handling issue 	 Shrinkage evaluation & distortion reduction New heat treatment method New piece adhesion method 		

Conclusion

PROTERIAL

In present speak, the magnetic properties and their applications of the nanocrystalline alloy ribbons were introduced. Developed materials can be one of the best candidate for next generation power electronics materials from several kHz to MHz.

- FINEMET[®] is designed having zero K and zero λ with high B_s owing to its nanocrystalline structure.
- In high B_s nanocrystalline alloy, owing to high Fe content nanocrystalline structure, high B_s and low core loss can be realized simultaneously.